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Background of our project 

 AV1 is the most advanced 
standardized codec available today.  

 

 Research and development of tools 
towards a potential successor to 
AV1, so called AV2, have started. 

01 

A viable successor for further 
BDRATE reduction over AV1.  

Debargha Mukherjee, Preliminary comparison of AV1 with emergent VVC 

standard, ICIP, 2019. 
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Our Goal  02 

We completely focus on the optimization of 

reconstruction frames through using the Deep Neural 

Network (DNN). 

In-loop filter 



Two problems are concerned 03 

Q2 
How to incorporate the CNN-based filters into AV1 
encoder? 

Q1 How to design a CNN-based in-loop filter for AV1? 

Two aspects are explored, including: 



• The problem has similarities with the SR problem.  

Q1 How to design a CNN-based in-loop filter for AV1? 
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SR Network  x4 



Dong et al, Learning a deep convolutional network for image super-resolution, 2014, pp. 

184-199, ECCV 2014. 

Loss function: 

Anwar et al. A deep journey into super-

resolution: A survey. Arxiv 1904.07523, 2019. 

process the in-loop filter in the same way.  



VDSR ResNet 

J. Kim, et al, Accurate image super-resolution using very 

deep convolutional networks, pp. 1646-1654, CVPR, 2016. 

 K. He et al, Identity mappings in deep residual 

networks, pp. 630-645,  ECCV, 2016. 

Classical CNNs 

Test conditions: 

 HM 16.9 

 18 images  

 QP=37 

 Intra coding 

 The anchor in-loop filters are turned off 

The PSNR gain 

is as large as 

0.8dB. 



But using large amount of parameters is expensive! 

Test conditions 

 AV1 platform (Sept.) 

 18 images 

 QP=53 

 Only intra coding 

To obtain a slim 

version 
 Reduces the number of 

channels 

 Reduce the kernel size 

 Select a balanced 

number of layers 

0.25dB can be achieved with 20k parameters. 

 



 Previous work focuses on designing various 
CNN structures. 

 These CNNs are directly incorporated into 
encoders for in-loop filtering. 

Q2 
How to incorporate the CNN-based filters into 
video encoders? 



• The filtered frames will be referenced in the subsequent coding.  

• Then can more gains be expected from inter coding? 

The over-filtering problem in AV1 inter (left), HEVC LDP (middle), and HEVC RA (right) 

Q2 
How to incorporate the CNN-based filters into 
video encoders? 



The test condition is 
inconsistent with the training 
condition.   
• We conduct end-to-end training 

and obtain a model, without 

considering the intertwined 

correlations across frames. 

• But there exists complex reference 

relationships in practical coding 

Such a “Direct” training obtains a locally 
optimal model. 
• A direct replacement using the “direct” model will 

trigger over-filtering problem. 

• We cannot obtain a global optimum model because it 

is impossible to simulate the correlations across 

frame in coding. 

 

How to avoid the over-filtering problem? 04 



Some remedies to redress the over-
filtering problem 

Solution 1  

01 Rate-Distortion  method 

Skipping method 
Only apply CNN to selective regions or frames 02 



Results on AV1 

Dandan Ding, Guangyao Chen, Debargha Mukherjee, Urvang Joshi, and Yue Chen, A 

CNN-based in-loop filtering approach for AV1 video codec, PCS, 2019. 

Guangyao Chen, Dandan Ding, Debargha Mukherjee, Urvang Joshi, and Yue Chen, 

AV1 in-loop filtering using a wide-activation structured residual network, IEEE ICIP, 

2019. 

Results 

 Only frame 2, 6, 10 and 14 are 

filtered by CNN. 

 Around 0.22dB gain is retained. 

 



Visual quality 

(a) Anchor 

 

(b) Apply CNN to every frame 

 

(c) CTU-RDO 

 

(d) Skipping method 

 



• Fundamentally solve the over-filtering problem.   

• We propose a progressive training method. 
• Through transfer learning, the reconstructed frames that have 

been filtered by the CNN models are progressively involved 
back to fine-tune the CNN models themselves. 

Train a global model Solution 2  



Visual quality 

 
Original frame CTU-RDO Proposed global model 



 

Original frame CTU-RDO Proposed global model 



Results of our global model 

• The global model can further improve the performance of RDO. 

• A direct application of the global model to each frame will achieve a 
comparable gain to that of RDO. 

Different solutions for over-filtering problem (PSNR) Test conditions 

 HEVC: HM16.9 

 QP=37 

 50 inter frames 

 RA configuration 



Multi-frame video enhancement 

• Above studies are all on basis of single frame. 

• Videos introduce an additional time dimension. 

• How to utilize the information from temporal domain? 

•  A pair of high-quality frames can be 

utilized to enhance the low-quality 

frames in between. 

•  There is frame-level quality fluctuation 

in compressed videos. 

R. Yang, et al, Multi-frame quality enhancement for compressed video,'‘ pp. 6664-6673, 

2018, CVPR, 2018. 



Results on AV1 

Performance of multi-frame method on AV1 (PSNR) 

Dandan Ding, Zheng Zhu, and Zoe Liu, Learning-based multi-frame video quality Enhancement, 

IEEE ICIP, 2019. 

Test conditions 

 QP=53 

 Only 36 low-quality frames 

 Flownet2.0 is employed for motion 

estimation 



Conclusion 

• Two problems are concerned when embedding the CNN-

based tools into video encoders.  

• The CNN structure 

• The incorporation approaches  

•  Currently, we employ a single CNN model to deal with 

all videos.  

• It is possible to develop different small CNNs for 

different video characteristics.   
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