Deep Neural Network Based Frame Reconstruction For Optimized Video Coding - An AV2 Approach

Dandan Ding Hangzhou Normal University ALLIANCE FOR OPEN MEDIA RESEARCH Symposium 2019

Background of our project

AV1 encode preset	Speed vs. VP9 [cpu-used=0auto-alt-ref=6]	BDRATE vs. VP9 [cpu-used=0 auto-alt-ref=6]
AV1 [cpu-used=0]	14.8x	-31.42%
AV1 [cpu-used=1]	5.3x	-29.24%
AV1 [cpu-used=2]	3.8x	-26.90%
AV1 [cpu-used=3]	1.9x	-24.52%
AV1 [cpu-used=4]	1.6x	-23.10%
AV1 [cpu-used=5]	1.4x	-21.89%

Mid resolution

High resolution

Baseline HEVC (HM16.17)	AV1 (libaom bff6ee33)	VVC (VTM 6.0)	Baseline HEVC (HM16.17)	AV1 (libaom bff6ee33)	VVC (VTM 6.0)
Av-PSNR	-20.8%	-25.3%	Av-PSNR	-24.4%	-28.5%
GIb-PSNR	-21.8%	-25.3%	GIb-PSNR	-26.1%	-28.5%
SSIM	-24.5%	-27.7%	SSIM	-28.0%	-31.2%

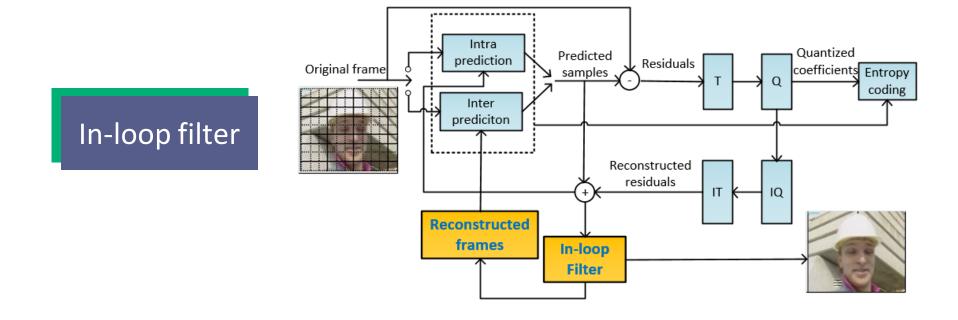
> AV1 is the most advanced standardized codec available today.

Research and development of tools towards a potential successor to AV1, so called AV2, have started.

A viable successor for further BDRATE reduction over AV1.

Debargha Mukherjee, Preliminary comparison of AV1 with emergent VVC standard, *ICIP*, 2019.

We completely focus on the optimization of reconstruction frames through using the Deep Neural Network (DNN).



Two problems are concerned

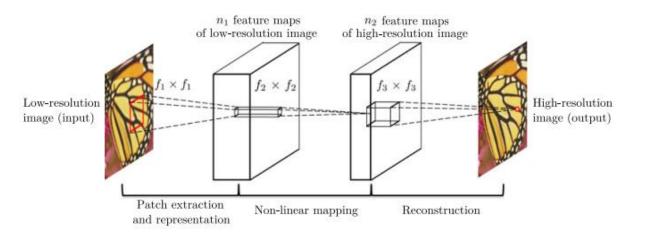
Two aspects are explored, including:

How to design a CNN-based in-loop filter for AV1?

How to incorporate the CNN-based filters into AV1 encoder?

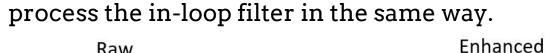
How to design a CNN-based in-loop filter for AV1?

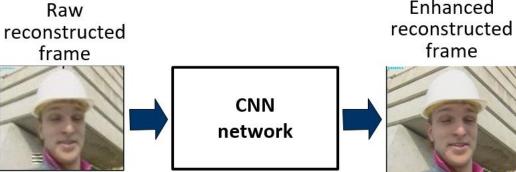
• The problem has similarities with the SR problem.

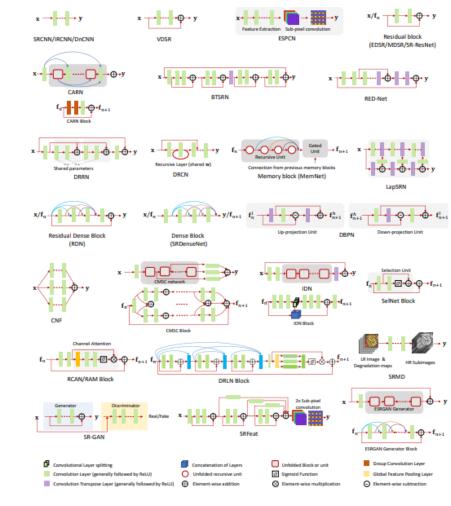


Dong et al, Learning a deep convolutional network for image super-resolution, 2014, pp. 184-199, ECCV 2014.

Loss function:
$$L(\Theta) = \frac{1}{n} \sum_{i=1}^{n} ||F(\mathbf{Y}_i; \Theta) - \mathbf{X}_i||^2$$

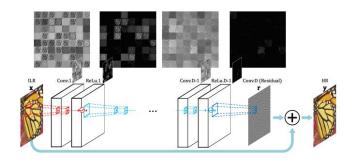




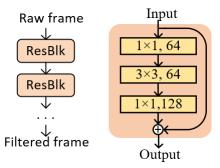


Anwar et al. A deep journey into superresolution: A survey. Arxiv 1904.07523, 2019.

VDSR



ResNet

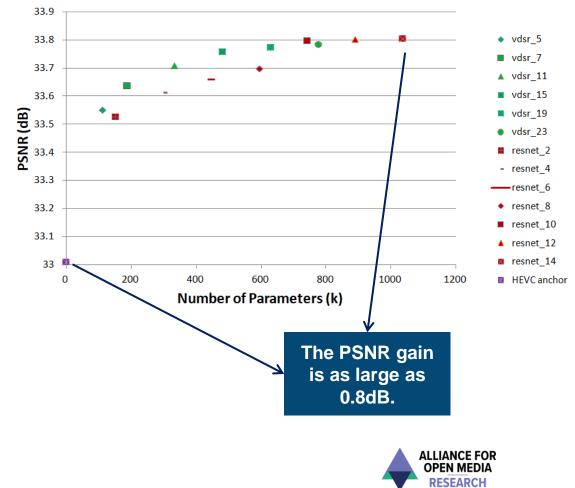


J. Kim, et al, Accurate image super-resolution using very K. He et al, Identity mappings in deep residual deep convolutional networks, pp. 1646-1654, *CVPR*, 2016. networks, pp. 630-645, *ECCV*, 2016.

Test conditions:

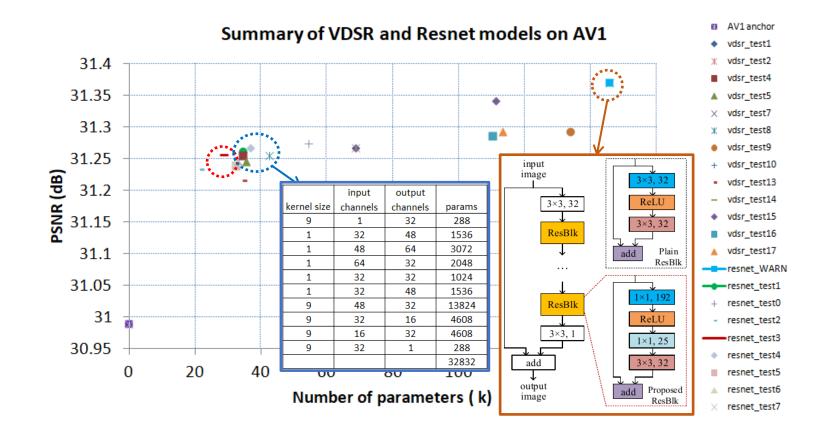
- ≻ HM 16.9
- > 18 images
- ➢ QP=37
- Intra coding
- The anchor in-loop filters are turned off

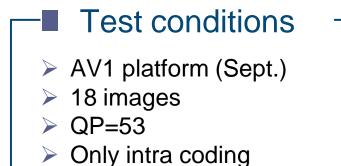
Performance of the CNN-based in-loop filtering



Symposium 2019

But using large amount of parameters is expensive!





To obtain a slim version

- Reduces the number of channels
- Reduce the kernel size
- Select a balanced number of layers

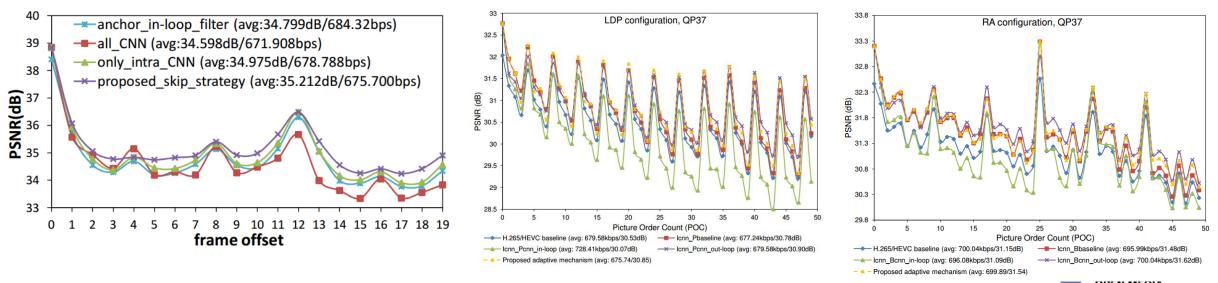
0.25dB can be achieved with 20k parameters.

How to incorporate the CNN-based filters into video encoders?

- > Previous work focuses on designing various CNN structures.
- > These CNNs are directly incorporated into encoders for in-loop filtering.

How to incorporate the CNN-based filters into video encoders?

- The filtered frames will be referenced in the subsequent coding.
- Then can more gains be expected from inter coding?



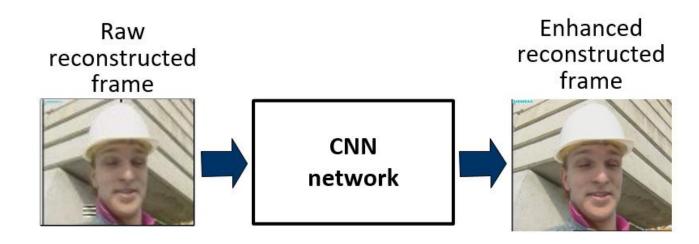
Symposium 2019

The over-filtering problem in AV1 inter (left), HEVC LDP (middle), and HEVC RA (right)

How to avoid the over-filtering problem?

Such a "Direct" training obtains a locally optimal model.

- A direct replacement using the "direct" model will trigger over-filtering problem.
- We cannot obtain a global optimum model because it is impossible to simulate the correlations across frame in coding.

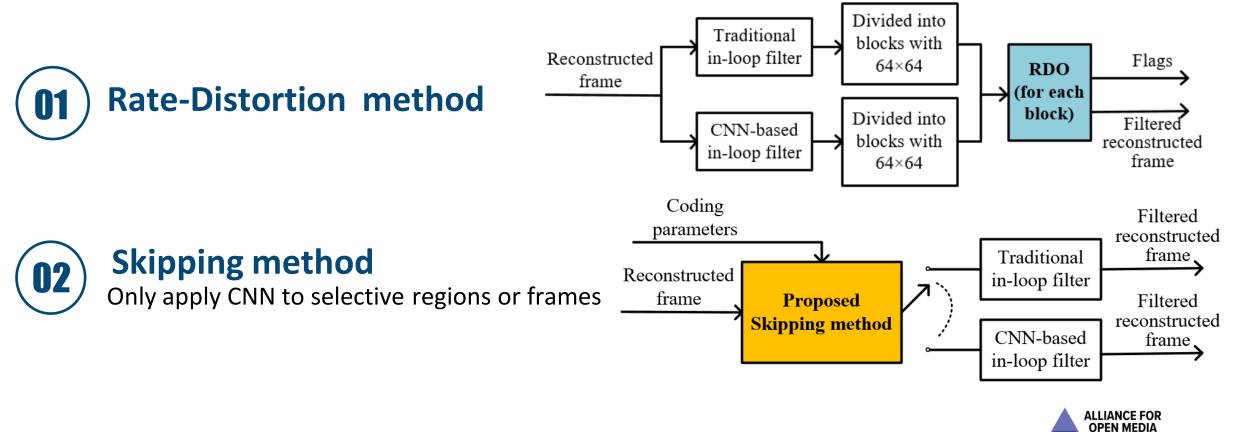


The test condition is inconsistent with the training condition.

- We conduct end-to-end training and obtain a model, without considering the intertwined correlations across frames.
- But there exists complex reference relationships in practical coding

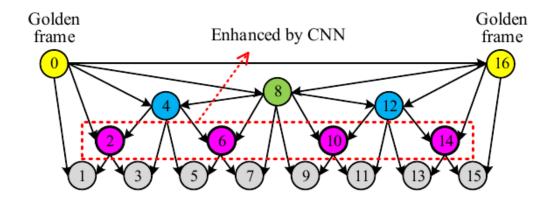
Some remedies to redress the overfiltering problem

Solution 1



RESEARCH Symposium 2019

Results on AV1



Results

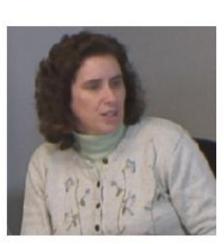
- Only frame 2, 6, 10 and 14 are filtered by CNN.
- > Around 0.22dB gain is retained.

Dandan Ding, Guangyao Chen, Debargha Mukhe	erjee, Urvang Joshi, and Yue Chen, A
CNN-based in-loop filtering approach for AV1 vide	eo codec, PCS, 2019.

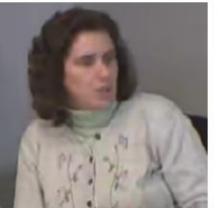
Guangyao Chen, Dandan Ding, Debargha Mukherjee, Urvang Joshi, and Yue Chen, AV1 in-loop filtering using a wide-activation structured residual network, *IEEE ICIP*, 2019.

Frame	AV1	Enhance	Proposed
No.	Anchor	every frame	skipping strategy
0	31.40	31.78	31.78
1	29.80	29.68	29.96
2	29.75	29.67	29.89
3	29.33	29.01	29.45
4	29.70	29.71	29.86
5	29.14	28.95	29.37
6	29.34	29.18	29.61
7	29.27	29.08	29.57
8	29.95	30.05	30.13
Avg.	29.74	29.68	29.96

Visual quality



original frame

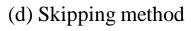


(a) Anchor

(b) Apply CNN to every frame

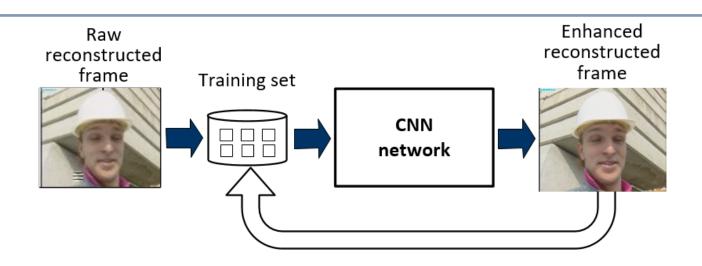
CHI KA

(c) CTU-RDO



Solution 2 Train a global model

- Fundamentally solve the over-filtering problem.
- We propose a progressive training method.
 - Through transfer learning, the reconstructed frames that have been filtered by the CNN models are progressively involved back to fine-tune the CNN models themselves.



Visual quality

Original frame

Proposed global model

Original frame

CTU-RDO

Proposed global model

Results of our global model

- The global model can further improve the performance of RDO.
- A direct application of the global model to each frame will achieve a comparable gain to that of RDO.

Different solutions for over-filtering problem (PSNR)

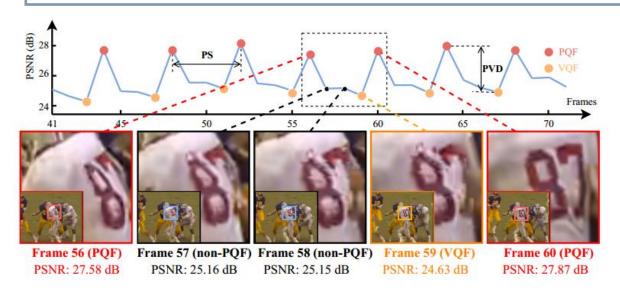
CTU-RDO using Direct model		CTU-RDO using the global model		Directly app global m	
Bitrate	PSNR	Bitrate	PSNR	Bitrate	PSNR
951.36	32.74	952.21	32.79	942.08	32.77

Test conditions

- ➢ HEVC: HM16.9
- ➢ QP=37
- > 50 inter frames
- RA configuration

Multi-frame video enhancement

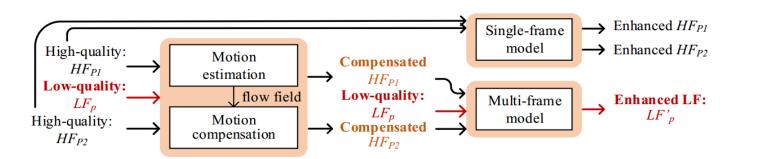
- Above studies are all on basis of single frame.
- Videos introduce an additional time dimension.
- How to utilize the information from temporal domain?



- There is frame-level quality fluctuation in compressed videos.
- A pair of high-quality frames can be utilized to enhance the low-quality frames in between.

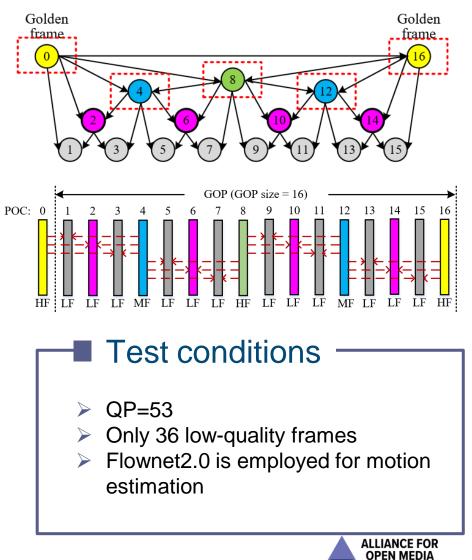
R. Yang, et al, Multi-frame quality enhancement for compressed video," pp. 6664-6673, 2018, *CVPR*, 2018.

Results on AV1



Dandan Ding, Zheng Zhu, and Zoe Liu, Learning-based multi-frame video quality Enhancement, *IEEE ICIP*, 2019.

	AV1 anchor	Multi frame	Single frame
Inter	35.49	35.84	35.71
Intra	30.72	31.57	30.86



RESEARCH

Symposium 2019

Conclusion

- Two problems are concerned when embedding the CNNbased tools into video encoders.
 - The CNN structure
 - The incorporation approaches
- Currently, we employ a single CNN model to deal with all videos.
- It is possible to develop different small CNNs for different video characteristics.

