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Background

• Conventional motion compensated prediction
• Block based
• Only accounts for translational motion

• Motivation: nearby motion vectors point to potentially 
relevant observations

• Contributions to:
• Forward prediction
• Bi-directional prediction
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• They point to a set of candidate reference pixels

• These pixels are treated as noisy observations of the current pixel.
• Construct optimal linear estimators to estimate current 

pixels from their “noisy observations”



Optimal linear estimator

• The observation vector corresponding to M candidate MVs:

• Linear estimator : 

• The optimal weights satisfy

Autocorrelation 
Matrix

Cross-correlation 
vector



Auto-Correlation Matrix Estimation

• Each matrix entry specifies the correlation between two 
pixels in the reference frame

• Modeling pixels in a frame as a first-order Markov process 
with spatial correlation coefficient ⍴s:



Cross-Correlation Vector Estimation

• Let the true (unknown) motion map pixel y to location s in 
the reference frame

• A separable temporal-spatial Markov model yields the 
cross-correlation:

For simplicity we will assume that  𝞺t=1



Cross-Correlation Vector Estimation

• Naturally, we do not known the true motion and hence s
• We need a subterfuge to calculate the cross correlation
• Observation:

•    is derived from motion vector MVi
•             decays with distance between y and the location of MVi in the 

current frame



● Model the decay of motion vector reliability with distance:

Cross-Correlation Vector Estimation

Define the probability that MVi is the true 
motion vector for pixel y:



Cross-Correlation Vector Estimation

● The expected distance between observation xi and s, the true 
motion compensated location of y on the reference frame:

● The cross-correlation:
● 1-D example weight distribution 



Considering Multiple Reference Frames

● Neighboring motion vectors may point to different reference 
frames
○ Observations are now not on the same reference frame so the 

spatial model cannot be directly applied

● Idea: for the autocorrelation matrix:
○ Find a common past frame 



Considering Multiple Reference Frames

Track along the motion vector chain
○ Locate the first common reference frame where

both observations have precursors
○ Since 

,



Overall Motion Compensated Prediction

• Derive the optimal per pixel linear estimators
• Based on the estimated cross-correlation vector and 

auto-correlation matrix
• Employ the estimators to form the current frame prediction

• Prediction coefficients account for the distance between and 
difference in nearby MVs  

• Automatically adapts to local variations



Experimental Results

• Single reference frame per block (no compound mode)
• Significant performance improvement

coastguard -5.08
foreman -5.24
flower -8.73
mobile -10.90

bus -6.14
stefan -6.01

BlowingBubbles -7.32
BQSquare -12.57
Average -7.75%



Compound Mode Enabled -Work in Progress..

• Compound Prediction is defined as

•  We define distance between p0 and p1

• Use “as is” the parameter set from
the single reference frame setting

• Preliminary result
• Average BD-Rate reduction ~ 1.9%
• Performance expected to improve significantly

once actually optimized/trained for compound mode



Bi-directional Prediction Background

• Conventional bi-directional motion compensated prediction
• Block based
• Only accounts for translational motion

• Important observation: redundancy in motion vectors



Bi-directional Prediction Background

• “Free” motion information is already available to the 
decoder

• Previously decoded MVs
• Viewed as intersecting the current frame
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Problem Formulation

• For the current pixel, identify projected MVs that intersect 
the frame near the current pixel
• These are the candidate MVs

• Use the candidate MVs to obtain pairs of reference pixels
• By applying the MVs to the current pixel
• These reference pixels are viewed as noisy observations

• Construct optimal linear estimators to estimate current 
pixels from their “noisy observations”



Optimal linear estimator (déjà vu)

• The observation vector corresponding to M candidate MVs:

• Linear estimator : 

• The optimal weights satisfy

Autocorrelation 
Matrix

Cross-correlation 
vector



Cross-Correlation Vector Estimation

• Consider the true motion trajectory
• Form a Markov chain

       -      -
• With temporal correlation

• Between the references, we get: 



Cross-Correlation Vector Estimation

• Consider next the candidate motion vectors
• The temporal-spatial separable Markov model

• Similarly, also form a Markov chain
• When spatial correlation decays 

exponentially with distance

• Need          for the cross correlation 
• By collecting data in the neighboring 

area of           and   



Estimation of Auto-Correlation Matrix

•                          , write observation as:

• Autocorrelation:

• Need 
• The “exponential decay” model

• Correlation decays with distance

             where

“Innovation” part that is uncorrelated with 



Co-Located Reference Frame

• Obtained the optimal linear estimator
• Based on the estimated cross-correlation and auto-correlation

• Note: estimate assumes linear motion for MV intersection 
with current frame

• Motion offsets degrade the prediction quality
• Solution: use the optimal linear estimate as a “reference 

frame”
• Largely co-located with the current frame
• Offset is eliminated by standard motion compensation
• Co-located frame also proposed in prior work, albeit at high 

complexity
• Generated by extensive optical flow estimation from reconstructed frames



Experimental Results

• Significant performance improvement
• Complexity much lower - circumvent extensive motion estimation


