Adaptive Optimal Linear Estimators for Enhanced Motion Compensated Prediction

Ken Rose, UCSB

Contributors

- Main UCSB researchers:
 - Bohan Li
 - Wei-Ting Lin
- Interaction and collaboration with Google researchers:
 - Jingning Han
 - Yaowu Xu
 - Debargha Mukherjee
 - Yue Chen
 - Angie Chiang

Background

- Conventional motion compensated prediction
 - Block based
 - Only accounts for translational motion
- Motivation: nearby motion vectors point to potentially relevant observations
 - Contributions to:
 - Forward prediction
 - Bi-directional prediction

• For a given pixel, consider a set of nearby **candidate MVs**

- For a given pixel, consider a set of nearby **candidate MVs**
- They point to a set of candidate reference pixels
 - These pixels are treated as noisy observations of the current pixel.

- For a given pixel, consider a set of nearby **candidate MVs**
- They point to a set of candidate reference pixels
 - These pixels are treated as **noisy observations** of the current pixel.
- Construct optimal linear estimators to estimate current pixels from their "noisy observations"

Optimal linear estimator

- The observation vector corresponding to M candidate MVs:
 - $\mathbf{x} = (x_1, x_2, ..., x_M)^T$
- Linear estimator :

$$\tilde{y} = \mathbf{w}^T \mathbf{x}$$

• The optimal weights satisfy

$$E\{\mathbf{x}\mathbf{x}^T\}\mathbf{w} - E\{\mathbf{x}y\} = 0$$

Autocorrelation Matrix Cross-correlation vector

Auto-Correlation Matrix Estimation

- Each matrix entry specifies the correlation between two pixels in the reference frame
- Modeling pixels in a frame as a first-order Markov process with spatial correlation coefficient ρ_s:

- Let the true (unknown) motion map pixel y to location s in the reference frame
 - A separable temporal-spatial Markov model yields the cross-correlation:

$$E\{x_iy\} = \sigma^2 \rho_t \rho_s^{d(s,x_i)}$$

For simplicity we will assume that $\rho_{t}=1$

- Naturally, we do not known the true motion and hence s
- We need a subterfuge to calculate the cross correlation
- Observation:
 - x_i is derived from motion vector MV_i
 - $E\{x_iy\}$ decays with distance between y and the location of MV_i in the current frame

Symposium 2019

• Model the decay of motion vector reliability with distance:

Symposium 2019

- The expected distance between observation x_i and s, the true motion compensated location of y on the reference frame: $E\{d(s, x_i)\} = \sum_i p_j(y) ||mv_i - mv_j||$
- The cross-correlation: $E\{x_iy\} = \sigma^2 \rho_t \rho_s^{E\{d(s,x_i)\}}$
- 1-D example weight distribution

Considering Multiple Reference Frames

- Neighboring motion vectors may point to different reference frames
 - Observations are now not on the same reference frame so the spatial model cannot be directly applied
- Idea: for the autocorrelation matrix:
 o Find a common past frame

Considering Multiple Reference Frames

Track along the motion vector chain

 Locate the first common reference frame where both observations have precursors

where $v_0^{m^*}$ and $v_1^{n^*}$ point to the same reference frame

Overall Motion Compensated Prediction

- Derive the optimal per pixel linear estimators
 - Based on the estimated cross-correlation vector and auto-correlation matrix
- Employ the estimators to form the current frame prediction
 - Prediction coefficients account for the distance between and difference in nearby MVs
 - Automatically adapts to local variations

Experimental Results

- Single reference frame per block (no compound mode)
 - Significant performance improvement

coastguard	-5.08
foreman	-5.24
flower	-8.73
mobile	-10.90
bus	-6.14
stefan	-6.01
BlowingBubbles	-7.32
BQSquare	-12.57
Average	-7.75%

Compound Mode Enabled -Work in Progress..

• Compound Prediction is defined as

$$p_0 = w^{(1)} p_0^{(1)} + w^{(2)} p_0^{(2)}$$

• We define distance between p_0 and p_1

$$d_{cm}(p_0, p_1) = \mathbf{w}^{(1)} d_{cm}(p_0^{(1)}, p_1) + \mathbf{w}^{(2)} d_{cm}(p_0^{(2)}, p_1)$$

- Use "as is" the parameter set from the single reference frame setting
- Preliminary result
 - Average BD-Rate reduction ~ 1.9%
 - Performance expected to improve significantly once actually optimized/trained for compound mode

Bi-directional Prediction Background

- Conventional bi-directional motion compensated prediction
 - Block based
 - Only accounts for translational motion
- Important observation: redundancy in motion vectors

Bi-directional Prediction Background

- "Free" motion information is already available to the decoder
 - Previously decoded MVs
 - Viewed as intersecting the current frame

- For the current pixel, identify projected MVs that intersect the frame near the current pixel
 - These are the **candidate MVs**

- For the current pixel, identify projected MVs that intersect the frame near the current pixel
 - These are the **candidate MV**s
- Use the candidate MVs to obtain pairs of reference pixels
 - By applying the MVs to the current pixel
 - These reference pixels are viewed as **noisy observations**

- For the current pixel, identify projected MVs that intersect the frame near the current pixel
 - These are the candidate MVs
- Use the candidate MVs to obtain pairs of reference pixels
 - By applying the MVs to the current pixel
 - These reference pixels are viewed as **noisy observations**
- Construct optimal linear estimators to estimate current pixels from their "noisy observations"

Optimal linear estimator (déjà vu)

- The observation vector corresponding to M candidate MVs:
 - $\mathbf{x} = (x_1, x_2, ..., x_M)^T$
- Linear estimator : $\tilde{y} = \mathbf{w}^T \mathbf{x}$
- The optimal weights satisfy

$$E\{\mathbf{x}\mathbf{x}^T\}\mathbf{w} - E\{\mathbf{x}y\} = 0$$
Autocorrelation
Cross-correlation
Vector

- Consider the true motion trajectory
- Form a Markov chain
 - $s^{(0)}\mathchar`- y$ $s^{(1)}$
 - With temporal correlation ρ_t

$$y = \rho_t s^{(0)} + n$$
$$s^{(1)} = \rho_t y + n^{(1)}$$

• Between the references, we get:

$$\rho_{01} = \frac{E\{s^{(0)}s^{(1)}\}}{\sigma_y^2} = \rho_t^2$$

- Consider next the **candidate motion vectors**
 - The temporal-spatial separable Markov model $\rho_i = \rho_t \rho_{s,i}$
- Similarly, also form a Markov chain
 - When spatial correlation decays exponentially with distance

$$\rho_{01,i} = \rho_i^2$$

$$x_i = 0.5x_i^{(0)} + 0.5x_i^{(1)}$$

$$E\{x_iy\} = \rho_i\sigma^2 = \sqrt{\rho_{01,i}}\sigma^2$$

- Need $\rho_{01,i}$ for the cross correlation
 - By collecting data in the neighboring area of $x_i^{(0)}$ and $x_i^{(1)}$

Estimation of Auto-Correlation Matrix

- $E\{x_iy\} = \rho_i \sigma^2$ write observation as:
 - $x_i =
 ho_i y + \boxed{z_i}$ "Innovation" part that is uncorrelated with y
- Autocorrelation:

 $E\{x_{i_1}x_{i_2}\} = \rho_{i_1}\rho_{i_2}\sigma^2 + E\{z_{i_1}z_{i_2}\}$

- Need $E\{z_{i_1}z_{i_2}\}$
 - The "exponential decay" model
 - Correlation decays with distance

 $E\{z_{i_1}z_{i_2}\}=exp(-\alpha||\Delta\mathbf{mv}_{i_1,i_2}||)\sigma_{z_1}\sigma_{z_2}$ where

$$\sigma_{z_i}^2 = (1-\rho_i^2)\sigma^2$$

Co-Located Reference Frame

- Obtained the optimal linear estimator
 - Based on the estimated cross-correlation and auto-correlation
- Note: estimate assumes linear motion for MV intersection with current frame
 - Motion offsets degrade the prediction quality
- Solution: use the optimal linear estimate as a "reference frame"
 - Largely co-located with the current frame
 - Offset is eliminated by standard motion compensation
 - Co-located frame also proposed in prior work, albeit at high complexity
 - Generated by extensive optical flow estimation from reconstructed frames

Experimental Results

- - Significant performance improvement
 Complexity much lower circumvent extensive motion estimation

Sequence	BD-rate change (%)
coastguard	-1.53
mobile	-4.37
foreman	-7.17
flower	-3.19
bus	-2.96
BasketballPass	-4.81
container	-3.95
tempete	-1.30
Average	-3.75

rate (kbit)/s

