
Lesson learnt from WebP.

What’s next?

Pascal Massimino
skal@google.com

Plan

● lessons learnt from VP8 -> WebP codec

● research direction and experiments for “WebP v2”

● results (+demo?)

Motivation

WebP, HEIF, AVIF ...

Motivation

WebP, HEIF, AVIF …

most recent Image codecs originate from Video codec.

Motivation

WebP, HEIF, AVIF …

most recent Image codecs originate from Video codec.

Is it a always a good choice?

Lessons learnt from VP8 -> WebP

Lessons learnt from VP8 -> WebP

Two main use-cases for image compression:

● “Capture” [device -> storage / CDN]

Lessons learnt from VP8 -> WebP

Two main use-cases for image compression:

● “Capture” [device -> storage / CDN]

● “Web consumption” [CDN -> mobile device]

Lessons learnt from VP8 -> WebP

Two main use-cases for image compression:

● “Capture” [device -> storage / CDN]

● “Web consumption” [CDN -> mobile device]

“WebP”

Web image format

important peculiarities

Web image format important peculiarities

● incremental decoding
● memory consumption
● small format overhead
● interleaved chunk data for early display
● efficient lossy/lossless transparency
● efficient lossless coding
● preview
● light ‘animation’ format (!= video)
● efficient in software, more than hardware

Web image format important peculiarities

● incremental decoding
● memory consumption
● small format overhead
● interleaved chunk data for early display
● efficient lossy/lossless transparency
● efficient lossless coding
● preview
● light ‘animation’ format (!= video)
● efficient in software, more than hardwareW

EBP v2 !!

WebP v2: experimentations

Goal:

 v2 = like v1 …

“Web-consumption”, not “Capture”.

WebP v2: experimentations

Goal:

 v2 = like v1 …

 … but ‘more’.

“Web-consumption”, not “Capture”.

WebP v2: experimentations

Goal:

 v2 = like v1 …

 … but ‘more’. And speed.

“Web-consumption”, not “Capture”.

WebP v2: experimentations

Goal:

 v2 = like v1 …

 … but ‘more’. And speed.

 And HDR.

“Web-consumption”, not “Capture”.

WebP v2: how do we improve upon v1?

What can we do differently than AV1?

WebP v2: how do we improve upon v1?

● floating partitioning
● small-context residual coding
● non-classic residuals
● custom predictors
● CfL
● lossy/lossless alpha
● more filters
● more predictors
● interruptibility
● custom CSP transform
● ANS + adaptive multi-symbol dictionaries
● tiles

WebP v2: how do we improve upon v1?

● floating partitioning [wip]
● small-context residual coding [go]
● non-classic residuals [failed so far]
● custom predictors [failed so far]
● CfL [go]
● lossy/lossless alpha [go]
● more filters [wip]
● more predictors [failed so far]
● interruptibility [go]
● custom CSP transform [go]
● ANS + adaptive SIMD multi-symbol dictionaries [go]
● tiles [go]

WebP v2: how do we improve upon v1?

● floating partitioning [wip]
● small-context residual coding [go]
● non-classic residuals [fail]
● custom predictors [fail so far]
● CfL [go]
● lossy/lossless alpha [go]
● more filters [wip]
● more predictors
● interruptibility [go]
● custom CSP transform [go]
● ANS + adaptive multi-symbol dictionaries [go]
● tiles

classic AV1 block partitioning

(low quality)

floating block-partitioning

floating block-partitioning

Parsing order = lexicographic order

X-Y sorted
Buffer = 32 px-high rolling cache (max block = 32x32)
Memory = O(32 * tile_width)

1 2 3 4 5

6 7

8 9

tile width

32px

floating block-partitioning

Parsing order != decoding order

Strategy: try to maximize the left-sample availability

1 1 2 2 8 3 9 9 12 10

4 5 5 4

3 6 7 7 10 12 11 11

6 8 13 13 14 14 15 15 16 16

1

floating block-partitioning

Parsing order != decoding order

Strategy: try to maximize the left-sample availability

 2

 !!

1

floating block-partitioning

Parsing order != decoding order

Strategy: try to maximize the left-sample availability

(5)

 2

(3)
(4)

(6)

1

Parsing order != decoding order

Strategy: try to maximize the left-sample availability

 4

 2

 !!
 5

 3

FLUSH!!

floating block-partitioning

1

Parsing order != decoding order

Strategy: try to maximize the left-sample availability

 4

 2

 !!
 5

 3 (6)(7)

floating block-partitioning

1

Parsing order != decoding order

Strategy: try to maximize the left-sample availability

 4

 2

 8

 5

 3 6

 7

floating block-partitioning

Problem:

 the search space is HUGE

floating block-partitioning

How to do RD-Opt
with this vast
search space??

Floating partitioning algo

Algo for finding a partitioning of a 32x32 section:
● use variance to label 4x4 blocks with four buckets.

Variance of input 4x4 blocks:

14.0 12.5 12.0 11.8 11.3 8.1 11.1 10.1

14.6 12.0 13.3 12.6 11.9 9.9 13.3 8.7

12.2 14.6 12.6 15.0 10.3 9.2 11.5 11.2

74.7 80.8 103.0 118.5 80.1 16.6 13.2 20.5

37.4 33.4 39.2 35.6 34.6 59.8 114.7 93.4

34.5 29.9 33.1 30.2 33.4 30.0 32.4 25.2

32.1 29.9 37.1 34.5 34.7 33.7 29.9 21.7

32.9 31.5 29.6 36.1 35.9 28.7 33.3 29.4

Floating partitioning algo

Algo for finding a partitioning:
● use variance to label 4x4 blocks with four buckets.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2 2 3 3 2 0 0 0

1 1 1 1 1 2 3 2

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

● lay down boxes with same labels,
● starting from the largest down to the smallest (finishing fill with 4x4 boxes).

Floating partitioning algo

Algo for finding a partitioning:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2 2 3 3 2 0 0 0

1 1 1 1 1 2 3 2

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

Floating partition algo

Algo for finding a partitioning:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2 2 3 3 2 0 0 0

1 1 1 1 1 2 3 2

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

Floating partitioning algo

● Variance isn’t necessary a good metric

● too many ‘small’ blocks for filling gaps

● so many other algos to try!

Floating partitioning algo

-> Still a lot of potential

 trading geometry vs residuals

Residual coding

Residual coding

3

1 3 -1

-2 2 -1

-6 1

4

-1 -1

-1

Bounds: use Adaptive Bit to say if
the residuals are bounded in X/Y. If
bounded, store bounds as range.

Residual: parse as zigzag but skip
anything that is outside the box:

Residual coding

3

1 3 -1

-2 2 -1

-6 1

4

-1 -1

-1 -1

EOB: Adaptive Bit, but only if we
have already touched both sides of
the bounding box.
Only 1s after When finding a 1, ABit
that indicates whether all elements
after are 1s.

Custom CSP transform

Custom CSP transform
Use PCA to
tight-fit the
color transform
matrix.

Lossy-lossless alpha mix

Lossy-lossless alpha mix

Lossy-lossless alpha mix

218 bytes.
In the header.

Triangle-based preview

Triangle-based preview

ICIP 2018 Paper.

https://arxiv.org/abs/1809.02257

WebP v2:

results so far

WebP v2: results so far. The Good.

WebP v2: results so far. The Bad.

WebP v2: results so far. The Ugly.

also good

Syntactic decomposition

AV1

Syntactic decomposition

WP2 block size coding
seems more efficient!

at the detriment of
block header

trading geometry vs residuals!

Enc Speed comparison
> ./examples/rd_curve kodim19.png -nomt -av1 -jpeg -webp -ssim

Q {size (bytes), bpp, psnr (dB), SSIM*, enc-time (sec), dec-time (sec)}
| WP2 | WebP | AV1 | JPEG
0.0 5074 0.10 27.07 6.50 1.79 0.10 5028 0.10 26.49 6.44 0.04 0.00 8305 0.17 30.15 7.98 5.28 0.02 4315 0.09 22.65 5.12 0.01 0.00
12.1 5776 0.12 27.50 6.69 1.86 0.10 13026 0.27 30.42 8.10 0.04 0.00 29446 0.60 35.15 11.92 12.23 0.02 11653 0.24 28.51 7.17 0.01 0.00
24.3 6834 0.14 28.24 6.99 1.81 0.09 18850 0.38 31.72 9.09 0.03 0.00 47852 0.97 37.74 14.02 18.20 0.03 19015 0.39 30.71 8.55 0.01 0.00
36.4 8308 0.17 29.04 7.32 1.83 0.09 24882 0.51 32.88 10.06 0.04 0.00 54919 1.12 38.48 14.61 20.71 0.03 25183 0.51 31.94 9.38 0.01 0.00
48.6 11780 0.24 30.17 7.96 1.70 0.11 31518 0.64 34.04 11.04 0.04 0.00 54919 1.12 38.48 14.61 20.71 0.04 30969 0.63 32.97 10.12 0.02 0.00
60.7 17264 0.35 31.79 9.04 1.79 0.11 37818 0.77 34.99 11.79 0.04 0.00 54919 1.12 38.48 14.61 20.86 0.03 36423 0.74 33.78 10.72 0.01 0.00
72.9 28386 0.58 34.12 10.80 1.92 0.10 44738 0.91 35.93 12.52 0.05 0.00 54919 1.12 38.48 14.61 20.95 0.03 46192 0.94 35.07 11.67 0.02 0.00
85.0 65536 1.33 39.15 14.45 2.28 0.11 73180 1.49 38.92 14.84 0.05 0.01 54919 1.12 38.48 14.61 21.22 0.03 65399 1.33 37.25 13.18 0.02 0.00

WebP
3x

jpeg
= ref

AV1
1200x

WP2
120x

WebP v2: demo

 [video]

https://youtu.be/yX5RW_ega-M
http://www.youtube.com/watch?v=yX5RW_ega-M

Conclusion

Plan for 2020:

● finalize the decoding tools for experiments

● release the code base as starting point

Thanks!

 Questions?

Extra material

incremental decoding

using fiber / coroutines to pass control around
between codec and network.

Not yet available dataAvailable chunk

CreateLocalContext() Yield()

Bitstream

Codec::Read(data)
(main context)

Codec::Decode()
(local context)

Time / CPU usage

User
(calling site)

WaitForNewPacket() New data chunk WaitForNewPacket()

Give execution
control

Successful
ANSDec::

ReadNextWord()

Successful
ANSDec::

ReadNextWord()

Successful
ANSDec::

ReadNextWord()

Blocking
ANSDec::

ReadNextWord()

Output buffer

return Status::Suspended;

Still not thereAvailable chunk

Resume() Yield()

Bitstream

Codec::Read(data)
(main context)

Codec::Decode()
(local context)

New data chunk

Was blocking,
now successful

ANSDec::
ReadNextWord()

Blocking
ANSDec::

ReadNextWord()

Discarded data

WaitForNewPacket()

return Status::Suspended;

Time / CPU usage

Successful
ANSDec::

ReadNextWord()

User
(calling site)

Output buffer

Available chunk

Resume() Close()

Bitstream

Codec::Read(data)
(main context)

Codec::Decode()
(local context)

New data chunk

Discarded data

OnDecodedImage()

return
Status::Decoded;

Time / CPU usage

User
(calling site)

Output buffer

Incremental decoding

Don’t assume you have the complete data
 for the whole frame

one must be able to quickly suspend / resume the decoding with as few work as possible

 -> check points

 -> coroutines in the bit-reader’s TryReadNext()

Corollary: good decoding error trapping and reporting is critical

Memory consumption

Video decoding = several buffers (Ref, Alt-ref, etc.)

WebP = O(width) memory consumption

 Blit to screen ASAP

animation = 1 buffer only

Hardware = difficult for images

Hardware decoding is:

● per-frame oriented, non-interruptible
● tricky to re-configure
● non-parallelizable
● unstable, sandboxed
● has transfer overhead

Hardware = difficult for images

WebP experiment with Android vp8 hardware:

 only 50% faster, but a lot of extra system complexity

-> Let’s target software decoding !

