Lesson learnt from WebP.

What's next?

Pascal Massimino skal@google.com

Plan

• lessons learnt from VP8 -> WebP codec

• research direction and experiments for "WebP v2"

• results (+demo?)

WebP, HEIF, AVIF ...

WebP, HEIF, AVIF ...

most recent **Image** codecs originate from **Video** codec.

WebP, HEIF, AVIF ...

most recent **Image** codecs originate from **Video** codec.

Is it a always a good choice?

Two main use-cases for image compression:

• "Capture" [device -> storage / CDN]

Two main use-cases for image compression:

- "Capture" [device -> storage / CDN]
- "Web consumption" [CDN -> mobile device]

Two main use-cases for image compression:

- "Capture" [device -> storage / CDN]
- "Web consumption" [CDN -> mobile device]

Web image format

important peculiarities

Web image format important peculiarities

- incremental decoding
- memory consumption
- small format overhead
- interleaved chunk data for early display
- efficient lossy/lossless transparency
- efficient lossless coding
- preview
- light 'animation' format (!= video)
- efficient in software, more than hardware

Web image format important peculiarities

- incremental decoding
- memory consumption
- small format over head
- interleaved chunk data for early display
- efficient lossy/lossless transparency
- efficient lossless coding
- preview
- light 'Inimation' format (!= video)
- efficient in software, more than hardware

Goal:

v2 = like v1 ...

Goal:

v2 = like v1 ...

... but 'more'.

Goal:

v2 = like v1...

... but 'more'. And speed.

Goal:

v2 = like v1...

... but 'more'. And speed.

And HDR.

What can we do differently than AV1?

- floating partitioning
- small-context residual coding
- non-classic residuals
- custom predictors
- CfL
- lossy/lossless alpha
- more filters
- more predictors
- interruptibility
- custom CSP transform
- ANS + adaptive multi-symbol dictionaries
- tiles

- floating partitioning [wip]
- small-context residual coding [go]
- non-classic residuals [failed so far]
- custom predictors [failed so far]
- CfL [go]
- lossy/lossless alpha [go]
- more filters [wip]
- more predictors [failed so far]
- interruptibility [go]
- custom CSP transform [go]
- ANS + adaptive SIMD multi-symbol dictionaries
- tiles [go]

- floating partitioning [wip]
- small-context residual coding [go]
- non-classic residuals [fail]
- custom predictors [fail so far]
- CfL [go
- lossy/lossless alpha [go]
- more filters [wip
- more predictors
- interruptibility [go]
- custom CSP transform [go]
- ANS + adaptive multi-symbol dictionaries [go]
- tiles

classic AV1 block partitioning

(low quality)

Parsing order = lexicographic order

X-Y sorted Buffer = 32 px-high rolling cache (max block = 32x32) Memory = O(32 * tile_width)

Parsing order != decoding order

Problem:

the search space is HUGE

How to do RD-Opt with this vast search space??

Algo for finding a partitioning of a 32x32 section:

• use variance to label 4x4 blocks with four buckets.

Variance of input 4x4 blocks:

14.012.512.011.811.38.111.110.114.612.013.312.611.99.913.38.712.214.612.615.010.39.211.511.274.780.8103.0118.580.116.613.220.537.433.439.235.634.659.8114.793.434.529.933.130.233.430.032.425.232.129.937.134.534.733.729.921.732.931.529.636.135.928.733.329.4

Algo for finding a partitioning:

• use variance to label 4x4 blocks with four buckets.

 $0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0$

 $0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0$

00000000

22332000

1111232

11111111

1111110

- lay down boxes with same labels,
- starting from the largest down to the smallest (finishing fill with 4x4 boxes).

Algo for finding a partitioning:

Algo for finding a partitioning:

 $0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0$

.

- Variance isn't necessary a good metric
- too many 'small' blocks for filling gaps
- so many other algos to try!

-> Still a lot of potential

trading geometry vs residuals

Residual coding

Residual coding

<u>Bounds:</u> use Adaptive Bit to say if the residuals are bounded in X/Y. If bounded, store bounds as range.

<u>Residual:</u> parse as zigzag but skip anything that is outside the box:

Residual coding

EOB: Adaptive Bit, but only if we have already touched both sides of the bounding box.

Only 1s after When finding a 1, ABit that indicates whether all elements after are 1s.

Custom CSP transform

Custom CSP transform

Lossy-lossless alpha mix

Lossy-lossless alpha mix

Lossy-lossless alpha mix

Triangle-based preview

218 bytes. In the header.

Triangle-based preview

ICIP 2018 Paper.

[grid = 64 x 64, nb_colors = 5 nb_pts = 187]

(39)

(33)

(34)

(31)

Colormap (w/ use counts): (50)

results so far

WebP v2: results so far. The Good.

WebP v2: results so far. The Bad.

WebP v2: results so far. The Ugly.

Metric: O PSNR • SSIM

Image: ddlfpppdncpllfjjc ٢

ALLIANCE FOR OPEN MEDIA

RESEARCH

Syntactic decomposition

AV1

Syntactic decomposition

WP2

Enc Speed comparison

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F	WP2	WebP	AV1	JPEG	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0	5074 0.10 27.07 6.50 1.79 0.10	5028 0.10 26.49 6.44 0.04 0.00	8305 0.17 30.15 7.98 5.28 0.02	4315 0.09 22.65 5.12 0.01	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1	5776 0.12 27.50 6.69 1.86 0.10	13026 0.27 30.42 8.10 0.04 0.00	29446 0.60 35.15 11.92 12.23 0.02	11653 0.24 28.51 7.17 0.01	0.00
$ \frac{4}{100} = \frac{1000}{100} = 1000$.4.3	6834 0.14 28.24 6.99 1.81 0.09	18850 0.38 31.72 9.09 0.03 0.00	47852 0.97 37.74 14.02 18.20 0.03	19015 0.39 30.71 8.55 0.01	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.4	8308 0.17 29.04 7.32 1.83 0.09	24882 0.51 32.88 10.06 0.04 0.00	54919 1.12 38.48 14.61 20.71 0.03	25183 0.51 31.94 9.38 0.01	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.6	11780 0.24 30.17 7.96 1.70 0.11	31518 0.64 34.04 11.04 0.04 0.00	54919 1.12 38.48 14.61 20.71 0.04	30969 0.63 32.97 10.12 0.02	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60.7	17264 0.35 31.79 9.04 1.79 0.11	37818 0.77 34.99 11.79 0.04 0.00	54919 1.12 38.48 14.61 20.86 0.03	36423 0.74 33.78 10.72 0.01	0.00
.0 65536 1.33 39.15 14.45 2.28 0.11 73180 1.49 38.92 14.84 0.05 0.01 54919 1.12 38.48 14.61 21.22 0.03 65399 1.33 37.25 13.18 0.02 0.00 WP2 pipeg 120x 3x 1200x = ref	2.9	28386 0.58 34.12 10.80 1.92 0.10	44738 0.91 35.93 12.52 0.05 0.00	54919 1.12 38.48 14.61 20.95 0.03	46192 0.94 35.07 11.67 0.02	0.00
WP2 WebP AV1 jpeg 120x 3x 1200x = ref	5.0	65536 1.33 39.15 14.45 2.28 0.11	73180 1.49 38.92 14.84 0.05 0.01	54919 1.12 38.48 14.61 21.22 0.03	65399 1.33 37.25 13.18 0.02	0.00
WP2WebPAV1jpeg120x3x1200x= ref						
120x 3x 1200x = ref		WP2	WebP	AV1	jpe	eg
		120x	-3x	1200x	= r	ef
				IEVVA		

WebP v2: demo

Plan for 2020:

- finalize the decoding tools for experiments
- release the code base as starting point

Thanks!

Questions?

Extra material

incremental decoding

using fiber / coroutines to pass control around between codec and network.

RESEARCH Symposium 2019

Incremental decoding

Don't assume you have the complete data for the whole frame

one must be able to quickly suspend / resume the decoding with as few work as possible

-> check points

-> coroutines in the bit-reader's TryReadNext()

Corollary: good decoding error trapping and reporting is critical

Memory consumption

Video decoding = several buffers (Ref, Alt-ref, etc.)

WebP = O(width) memory consumption

Blit to screen ASAP

animation = 1 buffer only

Hardware = difficult for images

Hardware decoding is:

- per-frame oriented, non-interruptible
- tricky to re-configure
- non-parallelizable
- unstable, sandboxed
- has transfer overhead

Hardware = difficult for images

WebP experiment with Android vp8 hardware:

only 50% faster, but a lot of extra system complexity

-> Let's target software decoding !

