High-efficiency AVI: devid and Eve AVI

Getting the most out of AV1; how to make it even better

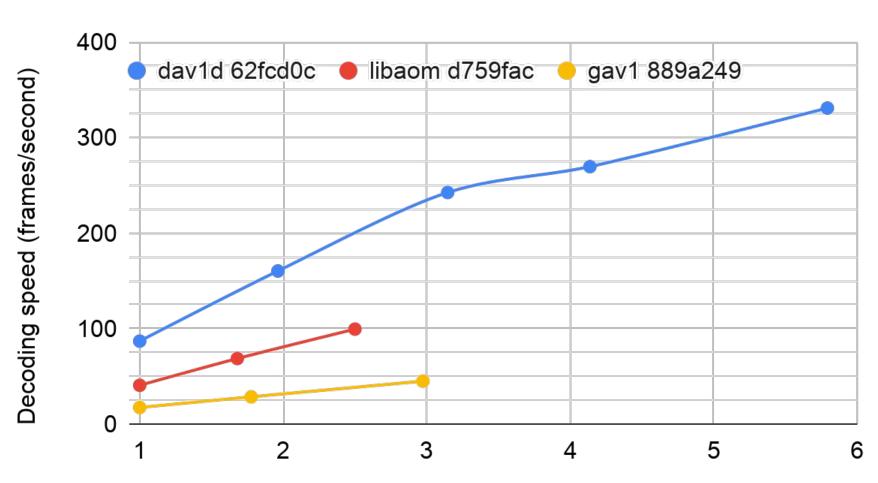
Ronald S. Bultje <rbultje@twoorioles.com> Founder, Two Orioles ALLIANCE FOR OPEN MEDIA RESEARCH Symposium 2019

d²V1d

- Videolan's AV1 decoder
 - Sponsored by AOMedia 0
 - Released in Sept. 2018 0
 - 2-clause BSD license 0
 - by Two Orioles, VideoLabs, 0 MultiCoreWare & many individual contributors

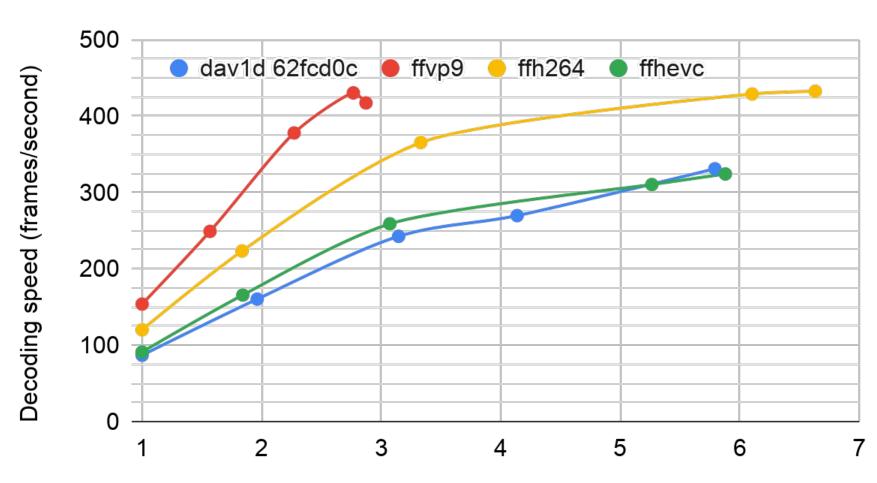
- Fast & multi-threaded
- Low memory usage
- Lean source code
- Small binary size
- Adoption
- AV1 challenges for decoders

A Projects G	roups Snippets	Help	Search or jump to	Q ? Sign in / Regis
d≟V1d dav1d				
1 Project				
Details				
Activity				
Releases				
Cycle Analytics				
Repository		dav1d		
) Issues	26	dav1d is a new AV1 cross-platform decoder, open-so	urce, and focused on speed and correctness.	
ን Merge Requests	9	The canonical repository URL for this repo is https://co	ode.videolan.org/videolan/dav1d	
CI/CD		This project is partially funded by the Alliance for Ope	n Media/ AOM .	
🖞 Wiki		Goal and Features		
🏦 Members		The goal of this project is to provide a decoder for mo lack of AV1 hardware decoder.	st platforms, and achieve the highest speed	possible to overcome the temporary
		It supports all features from AV1, including all subsam	pling and bit-depth parameters.	
		In the future, this project will host simple tools or simp	le wrappings (like, for example, an MFT trans	form).
		License		
		dav1d is released under a very liberal license, a contra including non-open-source software; or even drivers,		it can be embedded anywhere,


https://code.videolan.org/videolan/dav1d

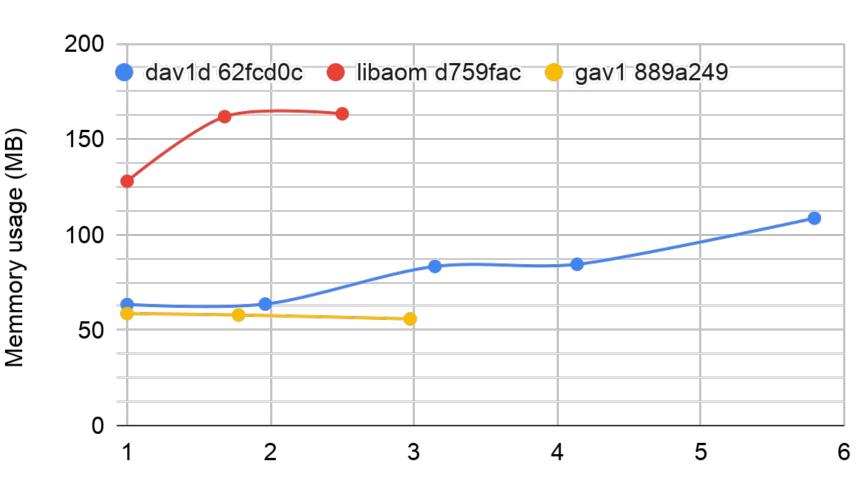
d²V1d

- Videolan's AV1 decoder
- Fast & multi-threaded
 - 2-5x as fast as libaom
 - 4-10x as fast as gav1
 - AV1/HEVC decoding have roughly same complexity
 - AV1 decoding is 30% more complex than VP9/H264
- Low memory usage
- Lean source code
- Small binary size
- Adoption
- AV1 challenges for decoders



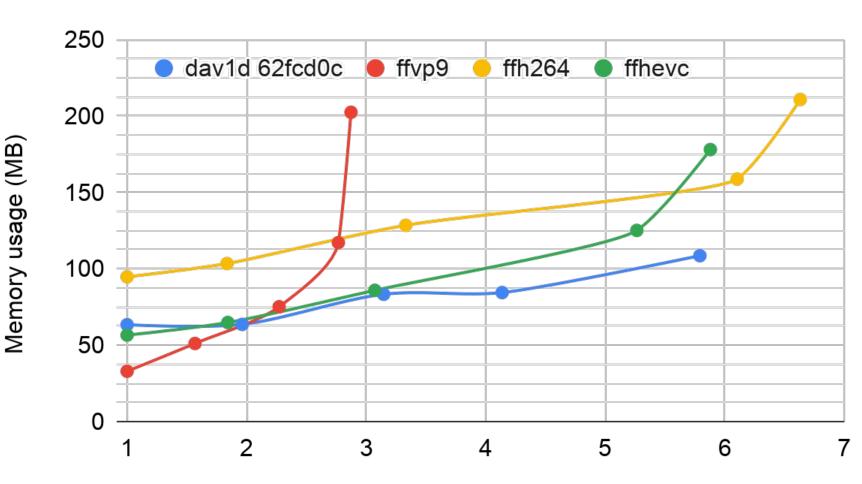
d 2V1d

- Videolan's AV1 decoder
- Fast & multi-threaded
 - 2-5x as fast as libaom
 - 4-10x as fast as gav1
 - AV1/HEVC decoding have roughly same complexity
 - AV1 decoding is 30% more complex than VP9/H264
- Low memory usage
- Lean source code
- Small binary size
- Adoption
- AV1 challenges for decoders



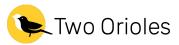
d²V1d

- Videolan's AV1 decoder
- Fast & multi-threaded
- Low memory usage
 - 30%-50% less than libaom
 - similar to gav1 with 1 thread and 35% more w/ threading
 - 40-50% less than other codecs w/ threading
- Lean source code
- Small binary size
- Adoption
- AV1 challenges for decoders



d²V1d

- Videolan's AV1 decoder
- Fast & multi-threaded
- Low memory usage
 - 30%-50% less than libaom
 similar to gav1 with 1 thread
 - similar to gav1 with 1 thread and 35% more w/ threading
 - 40-50% less than other codecs w/ threading
- Lean source code
- Small binary size
- Adoption
- AV1 challenges for decoders


d 2V1d

kLOC, decoder only

	dav1d	libaom	gav1
C/C++	34.6	87.2	45.5
x86 asm	43.1	68.5	15.6
arm asm	18.7	17.2	14.7
ppc asm	1.0	0.3	
mips asm		15.7	

- Videolan's AV1 decoder
- Fast & multi-threaded
- Low memory usage
- Lean source code + SIMD
 - dav1d: SSSE3-AVX2 (x86), 64bit Neon (arm)
 - 32bit Neon in progress
 - libaom: SSSE3-AVX2 (x86), 32+64bit Neon (arm)
 - gav1 has full SSE4.1 (x86),
 32+64bit Neon (arm)
- Small binary size
- Adoption
- AV1 challenges for decoders



d£V1d

- Videolan's AV1 decoder
- Fast & multi-threaded
- Low memory usage
- Lean source code
- Small binary size
- Adoption
- AV1 challenges for decoders

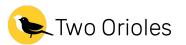
kB, decoder only		
dav1d	libaom	gav1
926	2936	1461

d£V1d

- Videolan's AV1 decoder
- Fast & multi-threaded
- Low memory usage
- Lean source code
- Small binary size
- Adoption
- AV1 challenges for decoders

Firefox brings you smooth video playback with the world's fastest AV1 decoder

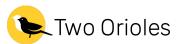
By Nathan Egge, Christopher Montgomery


Posted on May 23, 2019 in AV1, Featured Article, Firefox, Performance, and Research 🛛 🌳 Share This 💽

Tuesday's <u>release of Firefox 67</u> brought a number of performance enhancing features that make this our fastest browser ever. Among these is the high performance, royalty free AV1 video decoder <u>dav1d</u>, now enabled by default on all desktop platforms (Windows, OSX and Linux) for both 32-bit and 64-bit systems.

https://hacks.mozilla.org/2019/05/firefox-brings-you-smoothvideo-playback-with-the-worlds-fastest-av1-decoder/

- VLC 3.1 (April 8)
- Chrome M74 (April 23)
- Firefox 67 (May 14)
- FFmpeg 4.2 (August 5)
- You? (soon!)

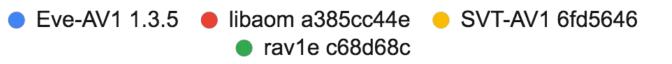


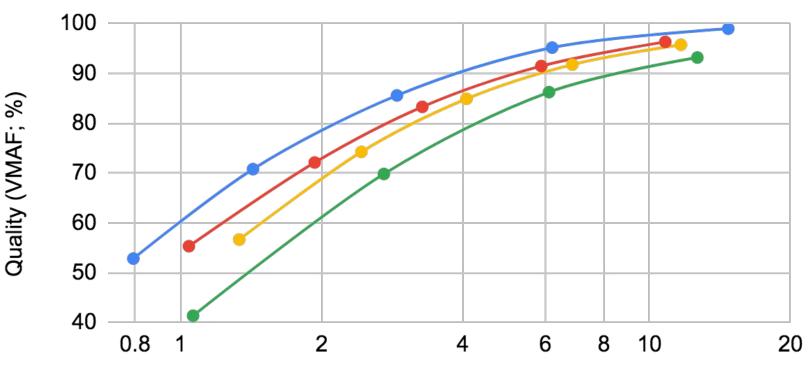
d <u>i</u>

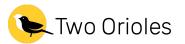
- Videolan's AV1 decoder
- Fast & multi-threaded
- Low memory usage
- Lean source code
- Small binary size
- Adoption
- AV1 challenges for decoders

- Tools
 - So many (~ implementation complexity)
 - Confusing rules for which tools are available at which block sizes
 - e.g. why are compound inter/inter wedges allowed at all block sizes between 8x8 and 32x32, but inter/intra wedges only at 2:1, 1:1 and 1:2 block sizes between 8x8 and 32x32?
- Symbol coding
 - Compound inter/inter type or intra prediction mode is only partially multi-symbol'ed
 - Coef high token coding is loopy, which hurts SIMD implementations
 - Grain scaling points are not using quniform
 - Motion vector range limits (2k pixels)
- Overall, things look pretty good 🙂

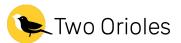
- Two Orioles' AV1 encoder
 - Closed-source / proprietary
 - VoD, offline encoding
 - High-value content
 - high-speed presets in progress
- Quality vs. Bitrate
- Quality-per-bit vs. Speed
- Multi-threading
- AV1 challenges for encoders



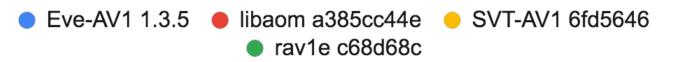

https://twoorioles.com/

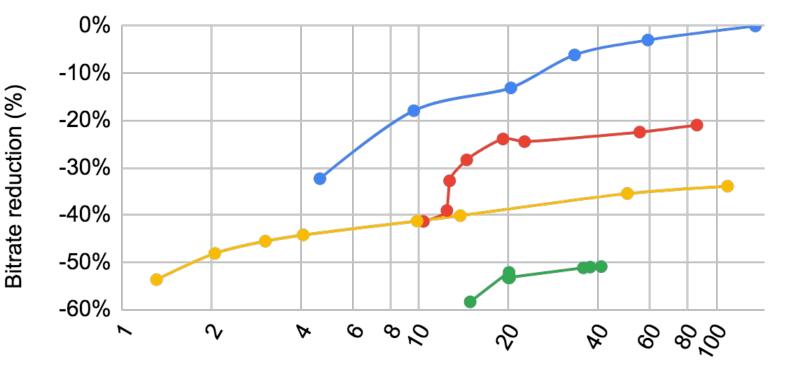

- Two Orioles' AV1 encoder •
- **Quality vs. Bitrate** Quality-per-bit vs. Speed
- Multi-threading •
- AV1 challenges for encoders lacksquare

Bitrate (mbps)

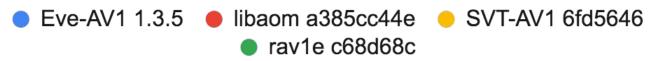


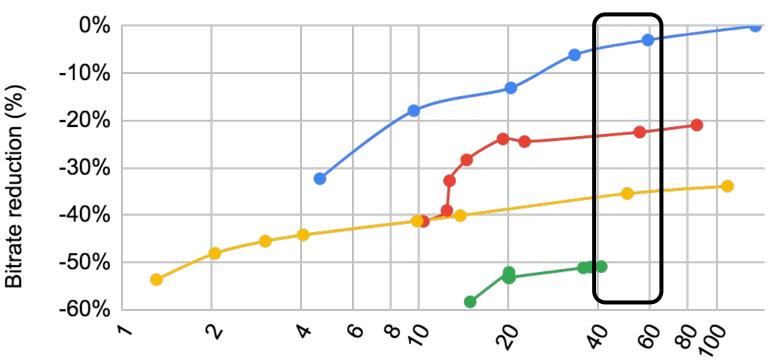
- Two Orioles' AV1 encoder •
- •
- **Quality vs. Bitrate** Quality-per-bit vs. Speed Multi-threading •
- •
- AV1 challenges for encoders ullet

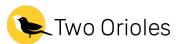

10000 01:000	% Bitrate	Runtime
1080p clips	reduction	(sec/frame)
Eve-AV1 1.3.5	0.00%	135.57
libaom a385cc44e	-20.95%	86.13
rav1e c68d68c	-50.88%	41.01
SVT-AV1 6fd5646	-33.88%	109.29

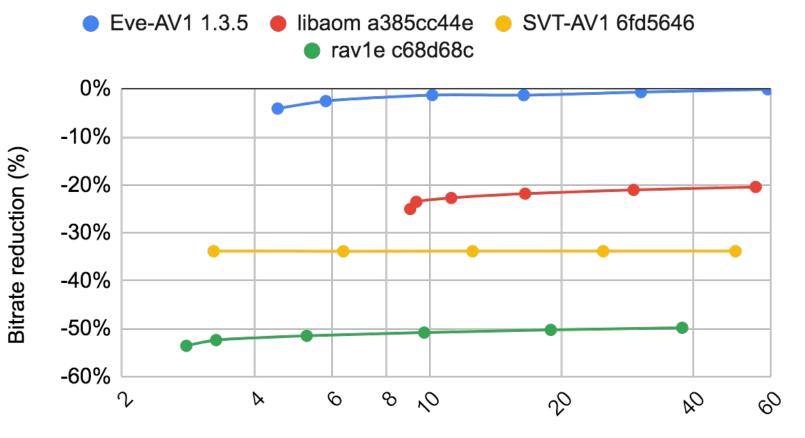


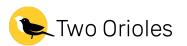
- Two Orioles' AV1 encoder
- Quality vs. Bitrate
- Quality-per-bit vs. Speed
- Multi-threading
- AV1 challenges for encoders


Encoding speed (seconds/frame)



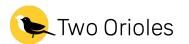

- Two Orioles' AV1 encoder
- Quality vs. Bitrate
- Quality-per-bit vs. Speed
- Multi-threading
- AV1 challenges for encoders


Encoding speed (seconds/frame)



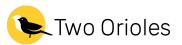
- Two Orioles' AV1 encoder
- Quality vs. Bitrate
- Quality-per-bit vs. Speed
- Multi-threading
- AV1 challenges for encoders

Encoding speed (seconds/frame)



- Two Orioles' AV1 encoder
- Quality vs. Bitrate
- Quality-per-bit vs. Speed
- Multi-threading
- AV1 challenges for encoders

- Tools
 - So many (coding & code complexity)
 - $O(x^n)$ vs. $O(x^*n)$ tools
 - subpel filters, wedge index, inter/intra mode, reference frame, transform type
 - global motion, deblock, CDEF, loop restoration, film grain
- Multi-threading
 - Limit top/right edge access at SB corners
 - increasing LRU size gives significant coding gains, but increases delay
 - Allow rectangular LRUs (w > h)?
 - CDEF Us overhang deblocked SB row boundaries (but LRUs do not?)
- MT encoder models for AV2?



- Two Orioles' AV1 encoder
- Quality vs. Bitrate
- Quality-per-bit vs. Speed
- Multi-threading
- AV1 challenges for encoders

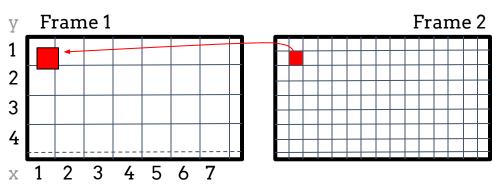
sbx=1 sby=1	sbx=2 sby=1	Thread 1 sbx=3 sby=1	
T <u>hread 2</u> sbx=1 sby=2			

- Tools
 - So many (coding & code complexity)
 - $O(x^n)$ vs. $O(x^*n)$ tools
 - subpel filters, wedge index, inter/intra mode, reference frame, transform type
 - global motion, deblock, CDEF, loop restoration, film grain
 - Multi-threading
 - Limit top/right edge access at SB corners
 - increasing LRU size gives significant coding gains, but increases delay
 - Allow rectangular LRUs (w > h)?
 - CDEF Us overhang deblocked SB row boundaries (but LRUs do not?)
- MT encoder models for AV2?



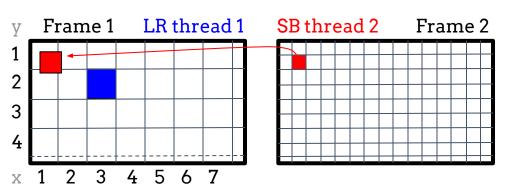
- Two Orioles' AV1 encoder
- Quality vs. Bitrate
- Quality-per-bit vs. Speed
- Multi-threading
- AV1 challenges for encoders

sbx=1 sby=1	Thread 1 sbx=2 sby=1	sbx=3 sby=1
T <u>hread 2</u> sbx=1 sby=2		


- Tools
 - So many (coding & code complexity)
 - $O(x^n)$ vs. $O(x^*n)$ tools
 - subpel filters, wedge index, inter/intra mode, reference frame, transform type
 - global motion, deblock, CDEF, loop restoration, film grain
- Multi-threading
 - Limit top/right edge access at SB corners
 - increasing LRU size gives significant coding gains, but increases delay
 - Allow rectangular LRUs (w > h)?
 - CDEF Us overhang deblocked SB row boundaries (but LRUs do not?)
- MT encoder models for AV2?

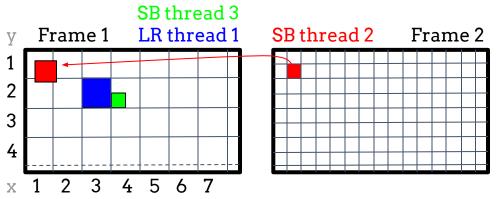
- Two Orioles' AV1 encoder
- Quality vs. Bitrate
- Quality-per-bit vs. Speed
- Multi-threading
- AV1 challenges for encoders

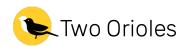
- Tools
 - So many (coding & code complexity)
 - $O(x^n)$ vs. $O(x^*n)$ tools
 - subpel filters, wedge index, inter/intra mode, reference frame, transform type
 - global motion, deblock, CDEF, loop restoration, film grain


- Limit top/right edge access at SB corners
- increasing LRU size gives significant coding gains, but increases delay
 - Allow rectangular LRUs (w > h)?
- CDEF Us overhang deblocked SB row boundaries (but LRUs do not?)
- MT encoder models for AV2?

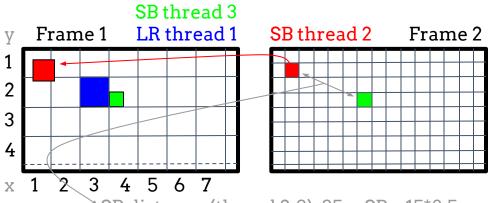
- Two Orioles' AV1 encoder
- Quality vs. Bitrate
- Quality-per-bit vs. Speed
- Multi-threading
- AV1 challenges for encoders

- Tools
 - So many (coding & code complexity)
 - $O(x^n)$ vs. $O(x^*n)$ tools
 - subpel filters, wedge index, inter/intra mode, reference frame, transform type
 - global motion, deblock, CDEF, loop restoration, film grain


- Limit top/right edge access at SB corners
- increasing LRU size gives significant coding gains, but increases delay
 - Allow rectangular LRUs (w > h)?
- CDEF Us overhang deblocked SB row boundaries (but LRUs do not?)
- MT encoder models for AV2?


- Two Orioles' AV1 encoder
- Quality vs. Bitrate
- Quality-per-bit vs. Speed
- Multi-threading
- AV1 challenges for encoders

- Tools
 - So many (coding & code complexity)
 - $O(x^n)$ vs. $O(x^*n)$ tools
 - subpel filters, wedge index, inter/intra mode, reference frame, transform type
 - global motion, deblock, CDEF, loop restoration, film grain


- Limit top/right edge access at SB corners
- increasing LRU size gives significant coding gains, but increases delay
 - Allow rectangular LRUs (w > h)?
- CDEF Us overhang deblocked SB row boundaries (but LRUs do not?)
- MT encoder models for AV2?

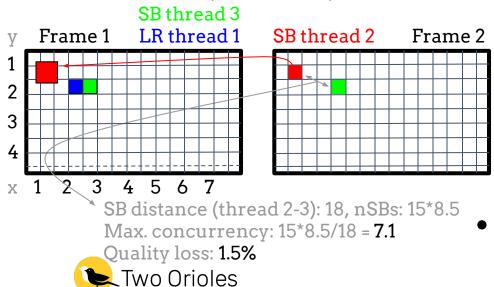
- Two Orioles' AV1 encoder
- Quality vs. Bitrate
- Quality-per-bit vs. Speed
- Multi-threading
- AV1 challenges for encoders



SB distance (thread 2-3): 35, nSBs: 15*8.5 Max. concurrency: 15*8.5/35 = 3.6

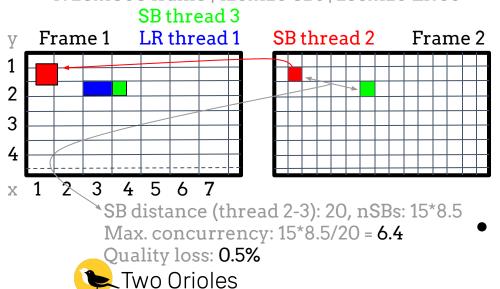
- Tools
 - So many (coding & code complexity)
 - $O(x^n)$ vs. $O(x^*n)$ tools
 - subpel filters, wedge index, inter/intra mode, reference frame, transform type
 - global motion, deblock, CDEF, loop restoration, film grain

- Limit top/right edge access at SB corners
- increasing LRU size gives significant coding gains, but increases delay
 - Allow rectangular LRUs (w > h)?
- CDEF Us overhang deblocked SB row boundaries (but LRUs do not?)
- MT encoder models for AV2?



- Two Orioles' AV1 encoder
- Quality vs. Bitrate
- Quality-per-bit vs. Speed
- Multi-threading
- AV1 challenges for encoders

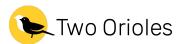
1920x1080 frame | 128x128 SBs | 128x128 LRUs


- Tools
 - So many (coding & code complexity)
 - $O(x^n)$ vs. $O(x^*n)$ tools
 - subpel filters, wedge index, inter/intra mode, reference frame, transform type
 - global motion, deblock, CDEF, loop restoration, film grain

- Limit top/right edge access at SB corners
- increasing LRU size gives significant coding gains, but increases delay
 - Allow rectangular LRUs (w > h)?
- CDEF Us overhang deblocked SB row boundaries (but LRUs do not?)
- MT encoder models for AV2?

- Two Orioles' AV1 encoder
- Quality vs. Bitrate
- Quality-per-bit vs. Speed
- Multi-threading
- AV1 challenges for encoders

- Tools
 - So many (coding & code complexity)
 - $O(x^n)$ vs. $O(x^*n)$ tools
 - subpel filters, wedge index, inter/intra mode, reference frame, transform type
 - global motion, deblock, CDEF, loop restoration, film grain


- Limit top/right edge access at SB corners
- increasing LRU size gives significant coding gains, but increases delay
 - Allow rectangular LRUs (w > h)?
- CDEF Us overhang deblocked SB row boundaries (but LRUs do not?)
- MT encoder models for AV2?

- Two Orioles' AV1 encoder
- Quality vs. Bitrate
- Quality-per-bit vs. Speed
- Multi-threading
- AV1 challenges for encoders

- Tools
 - So many (coding & code complexity)
 - $O(x^n)$ vs. $O(x^*n)$ tools
 - subpel filters, wedge index, inter/intra mode, reference frame, transform type
 - global motion, deblock, CDEF, loop restoration, film grain
- Multi-threading
 - Limit top/right edge access at SB corners
 - increasing LRU size gives significant coding gains, but increases delay
 - Allow rectangular LRUs (w > h)?
 - CDEF Us overhang deblocked SB row boundaries (but LRUs do not?)
- MT encoder models for AV2?

Questions?

Ronald S. Bultje <rbultje@twoorioles.com> Founder, Two Orioles

ALLIANCE FOR OPEN MEDIA RESEARCH Symposium 2019