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Introduction

o In VP9, 64 x 64 superblocks are partitioned recursively, possibly down to 4 x 4 blocks at
four hierarchical levels.

@ The rate-distortion optimization (RDO) based partition decision is a slow process owing
to the combinatorial complexity of the partition search space.
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Figure 1: Hierarchical superblock partition at four levels.
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Related Work

o Several machine learning (ML) based approaches with custom feature design attempted
to reduce the computational overhead of the partition search in HEVC [1], VP9 [2] and
VVC [3].

o Fewer works use deep learning based methods to solve the problem for HEVC [4, 5, 6].

@ A parallel convolutional neural network architecture was employed in [4] to achieve a
speedup of 61.8% for a 2.25% increase in BD-rate in the intra mode of HEVC.

o A multi stage ML-framework was used to sequentially make block partition decisions in
[2], achieving a speedup of 60.1% over the speed 0 setting of the VP9 encoder with
0.07% increase in BD-rate.
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Overview of Approach

Our approach involves a bottom-up block merge prediction using a hierarchical fully
convolutional neural network (H-FCN) [7] .
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Figure 2: VP9 partition prediction approach.

implementation available at https://github.com/Somdyuti2/H-FCN.git
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Database Creation

Content Selection

@ The content for our database comprises 89 movies and 17 television episodes, which were
selected from video sources in the Netflix catalog.

e Each video content was encoded at three different resolutions (1080p, 720p and 540p)
using the reference VP9 encoder from the libvpx package.

@ The contents were encoded in VP9 Profile 0, using speed level 1 and the good quality
configuration.
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Database Creation

Partition Tree Representation

@ A concise description of the partition tree was required for effective learning.
@ The partition tree was represented in the form of a set of four matrices:
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Figure 3: Matrix representation of the four level partition tree.
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Database Creation

@ The reference VP9 decoder from the libvpx package was modified to extract the

superblock partition trees and the corresponding quantization parameter (QP) values
from the encoded bitstreams.

@ The raw pixel data for each superblock was obtained by extracting the luma channels of

non-overlapping 64 x 64 blocks from the source videos downsampled to the encode
resolution.

@ Our database encompasses internal QP values in the range 8-105.

Table 1: Summary of VP9 intra-mode superblock partition database

Database Contents % of CGI content | # of samples
Training | 62 (M) + 12 (E) 12.16 11 990 384
Validation | 27 (M) + 5 (E) 12.50 4 698 195
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H-FCN Model Architecture
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Figure 4: Architecture of H-FCN model having 26 336 parameters and 54 610 FLOPs.
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H-FCN Training

Categorical cross entropy loss
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Figure 5: H-FCN loss with training progress.
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Prediction Performance

The prediction accuracy at each level was evaluated on 10° randomly drawn samples from the

training and validation sets.

Table 2: Prediction accuracy of H-FCN model

Level # | Training (%) | Validation (%)
0 89.42 90.27
1 84.42 83.47
2 86.07 85.13
3 91.73 91.18
VP9 Partition Prediction Using H-FCN
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Inconsistency Correction

@ At each level, the model predictions are made independently of all other levels.

@ Possible inconsistencies between the predictions of any two levels are corrected by a
top-down approach.
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Figure 6: Top-down inconsistency correction.
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Visualizing Superblock Partitions
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Figure 7: Superblock partitions predicted by the trained H-FCN model compared with ground truth.
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Encoding Performance

@ The trained model was integrated with the reference VP9 encoder using the Tensorflow C
API.

@ The predicted partitions were ordered to form a preorder traversal of the partition tree,
and subsequently used to replace the RDO based partition decision in a recursive fashion.

@ The encoding performance was evaluated on 30 test sequences at 3 resolutions in terms
of both BD-rate and speedup (AT).

Table 3: Encoding perfomance with respect to RDO baseline

Resolution | AT (%) | BD-rate (%)
1080p 67.5 1.70
720p 722 1.75
540p 695 1.68

Overall 69.7 1.71
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Encoding Performance

Comparison with Speed Level 4 of Reference Encoder

@ The speedup and BD-rate of our approach was also compared with speed level 4 of the
reference VP9 encoder, the highest recommended speed level for the baseline
configuration.

Table 4: Comparison of speedup versus BD-rate tradeoff of our approach with VP9 speed level 4

_ AT (%) BD-rate (%)
Resolution 7o 74 H-FCN | Speed 4 H-FCN
1080p 620 675 | 295  1.70
720p 682 722 | 412 175
540p 659 695 | 238  1.69
Overall 65.4 69.7 3.15 1.71
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Encoding Performance

Comparison with Speed Level 4 of Reference Encoder

The benefit offered by our approach in terms of speedup persists across the range of QP
values used to learn the H-FCN model.
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Figure 8: Speedup achieved by H-FCN and RDO at speed 4 relative to baseline.
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Concluding Remarks

@ Our H-FCN based partition prediction approach achieved 69.7% speedup on average at
the expense of 1.71% increase in BD-rate.

@ It achieves 4.3% higher speed up than the speed level 4 of the reference encoder, while
incurring 1.44% smaller BD-rate penalty.

o Further benefits can possibly be derived by extending the approach to the AV1 codec.
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